Mechanism for the effects of extracellular acidification on HERG-channel function.

نویسندگان

  • Min Jiang
  • Wen Dun
  • Gea-Ny Tseng
چکیده

Human ether-à-go-go-related gene ( HERG) encodes a K channel similar to the rapid delayed rectifier channel current ( I Kr) in cardiac myocytes. Modulation of I Kr by extracellular acidosis under pathological conditions may impact on cardiac electrical activity. Therefore, we studied the effects of extracellular acidification on I Kr function and the underlying mechanism, using HERGexpressed in Xenopus oocytes as a model. Acidification [extracellular pH (pHo) 8.5-6.5] accelerated HERG deactivation (at -80 mV, the time constant τ of the major component of deactivation was 253 ± 17, 158 ± 10, and 65 ± 5 ms at pHo 8.5, 7.5, and 6.5, respectively; n = 7-10 each), with no effects on other gating kinetics except a modest acceleration of recovery from inactivation (at -80 mV, τ of recovery was 4.7 ± 0.3, 3.8 ± 0.3, and 1.3 ± 0.2 ms at pHo 8.5, 7.5, and 6.5, respectively; n = 4-7 each). The following were ruled out as the underlying mechanisms: 1) voltage shift in channel activation, 2) pore blockade by protons, 3) protonation of histidines on the extracellular domain of HERG, 4) acceleration of recovery from C-type inactivation, and 5) interaction between an external H+binding site and the cytoplasmic NH2-terminal domain (a key determinant of HERG deactivation rate). Extracellular application of diethylpyrocarbonate caused an irreversible acceleration of HERG deactivation and prevented further acceleration by external acidification. Our data suggest that side chains accessible to the extracellular solution mediated the effects of elevating extracellular H+ concentration on channel deactivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the voltage-insensitive step of HERG activation by extracellular pH.

Human ether-à-go-go-related gene (HERG, Kv11.1, KCNH2) voltage-gated K(+) channels dominate cardiac action potential repolarization. In addition, HERG channels play a role in neuronal and smooth cell excitability as well as cancer pathology. Extracellular pH (pH(o)) is modified during myocardial ischemia, inflammation, and respiratory alkalosis, so understanding the response of HERG channels to...

متن کامل

A novel extracellular calcium sensing mechanism in voltage-gated potassium ion channels.

Potassium (K(+)) channels influence neurotransmitter release, burst firing rate activity, pacing, and critical dampening of neuronal circuits. Internal and external factors that further modify K(+) channel function permit fine-tuning of neuronal circuits. Human ether-à-go-go-related gene (HERG) K(+) channels are unusually sensitive to external calcium concentration ([Ca(2+)](o)). Small changes ...

متن کامل

Molecular dynamics and continuum electrostatics studies of inactivation in the HERG potassium channel.

Fast inactivation of the HERG potassium channel plays a critical role in normal cardiac function. Malfunction of these channels due to either genetic mutations or blockade by drugs leads to cardiac arrhythmias. An unusually long S5-P linker in the outer mouth of HERG is implicated in the fast inactivation mechanism. To examine the role of the S5-P linker in this inactivation mechanism, we study...

متن کامل

Use-dependent 'agonist' effect of azimilide on the HERG channel.

Azimilide (AZ) is a class III antiarrhythmic drug that has voltage-dependent dual effects on the HERG channel: 1) increasing current amplitude at low-voltage depolarization (agonist effect), and 2) suppressing current at more depolarized voltages (antagonist effect). We examined the mechanism for the agonist effect of AZ on HERG expressed in Xenopus oocytes. The agonist effect resulted from an ...

متن کامل

Cytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes

Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 277 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1999